Advanced multiphysics modeling of Perovskite/Silicon tandem cells under real operating conditions

  • Villeurbanne, Rhône
  • CDD
  • Temps-plein
  • Il y a 17 jours
Offer DescriptionIn the current photovoltaic energy landscape, silicon-based solar cells dominate the market, accounting for 96% of the industry with power conversion efficiency reaching approximately 22% for commercial modules and up to 26.7% for research cells, nearing the theoretical Shockley-Queisser (SQ) limit of 29.4%. These advancements are the result of significant breakthroughs in solar cell architecture, focusing on enhancing light absorption and the optimized collection of photo-generated charges. To maximize the absorption of photons from the solar spectrum, tandem solar cells present a viable approach to surpass the SQ limit. For instance, KAUST researchers have achieved a certified efficiency of 33.9% in 2024 with perovskite/Si tandem cells, demonstrating the considerable potential of these technologies to exceed the SQ theoretical limit.
It is important to note that optimization processes are conducted under standard test conditions (STC) with a fixed cell temperature of 25°C. However, these standard test conditions, while useful for comparing different products and technologies, do not reflect real operational conditions where factors like cell temperature can drastically influence the performance and durability of the modules. Indeed, the operating temperature of the cells can exceed 70°C, resulting in temperature coefficients (TC) between 0.3 and 0.45%/°C. Consequently, the total annual energy production of PV modules is significantly lower than expected. Besides efficiency, the reliability and durability of the modules are also compromised by high temperatures, leading to an increase in the levelized cost of electricity (LCOE). While thermal effects are well documented for crystalline silicon technologies, the impact of temperature on new perovskite-based technologies remains underexplored. In conclusion, improving and acquiring knowledge of the thermal and electrical phenomena governing the behaviors of PV cells and modules are essential to establish a set of conditions that optimally facilitate these phenomena.
The general objective of this thesis project is to significantly contribute to solving the scientific challenges currently hindering the electrical conversion efficiency of tandem PV cells under real operational conditions. This project will focus on the use of coupled multiphysical simulations (optical, thermal, and electrical) for 2T/3T tandem cell architectures to optimize their design (materials and geometry). These simulations rely on tools and methodologies developed and available at INL (using PYTHON/COMSOL). The simulation approach will be complemented by experimental measurements of the performance of tandem cells, allowing for an accurate correlation between theoretical predictions and actual behaviors.Funding category: Contrat doctoral
Thèse CNRS financé
PHD Country: FranceRequirementsSpecific RequirementsLa personne recrutée évoluera au sein de l'équipe i-Lum a développé une expertise internationalement reconnue dans le contrôle à l'échelle nanométrique de l'interaction lumière-matière avec les cristaux photoniques et les métasurfaces, et son application dans des domaines tels que les cellules solaires et la collecte d'énergie solaire, avec des activités allant de la simulation opto-électrique à la nanofabrication et à la caractérisation. Plus précisément, l'équipe a été pionnière dans la simulation multiphysique (optique, thermique et électrique) des cellules solaires. Tous les moyens communs de l'INL seront mis à disposition pour la réussite du projet, en particulier les outils de caractérisation par microscopie, spectroscopie optoélectronique et spectroscopie vibrationnelle.Additional InformationWork Location(s)Number of offers available 1 Company/Institute Institut des Nanotechnologies de Lyon (INL) Country France City VilleurbanneWhere to apply WebsiteContact WebsiteSTATUS: EXPIRED

EURAXESS